Crop Insurance Model Based on Maximum Daily Rainfall and Maximum Daily Temperature Index

Authors

  • Siti Umamah Naili Muna INDONESIA

DOI:

https://doi.org/10.32832/astonjadro.v12i2.13207

Keywords:

crop insurance model, exit, maximum daily rainfall distribution, maximum daily temperature distribution, premium.

Abstract

A loss insurance model of risk for agricultural commodities that considers maximum daily rainfall and maximum daily temperature is introduced in this paper. This model requires bivariate distribution of maximum daily rainfall and maximum daily temperature in a specific region. Characteristics of particular agricultural commodity is also needed in the region where the two variables are being insured. The bivariate distribution and commodity characteristics are combined to obtain exit. exit is a benchmark value that causes the total crop failure and gives full benefit claim to policyholder. The case study was demonstrated by using data on maximum daily rainfall and temperature in Dramaga Bogor from September to December during 38 years (1984-2021) . Data was collected from Jawa Barat Climatology Station. Frank Copula is better to represent the bivariate distribution of data. Furthermore, two scenarios had given the premiums as IDR 2 482 925 per hectare and IDR 1 495 660 per hectare. This crop insurance model based on maximum daily rainfall and maximum daily temperature index could be the basis for the next developing of crop insurance model.

Author Biography

Siti Umamah Naili Muna, INDONESIA

Mathematics Study Program, Faculty of Mathematics and Natural Science, Universitas Terbuka, Jakarta

References

Bayu, M.Z. (2022). Analisis Pembentukan Sebaran Bivariat Berbasis Copula Antara Luas Area Terbakar dan Curah Hujan di Sumatra Bagian Selatan (Unpublished undergraduate thesis). Institut Pertanian Bogor, Bogor, Indonesia.

BMKG (2022, November 4). Probabilitic of 24 Hours Rainfall. Retrieved from https://www.bmkg.go.id/cuaca/probabilistik-curah-hujan.bmkg#:~:text=Satu%20milimeter%20hujan%20berarti%20air,meresap%2C%20mengalir%2C%20atau%20menguap.

Boer, R. (2012). Asuransi iklim sebagai jaminan perlindungan ketahanan petani terhadap perubahan iklim. Proceedings from Widyakarya Nasional Pangan dan Gizi 10: Pemantapan Ketahanan Pangan dan Perbaikan Gizi Berbasis Kemandirian dan Kearifan Lokal, Jakarta: LIPI.

Boyd, et al. (2020). The design of weather index insurance using principal component regression and partial least square regression: the case of forage crops. North American Actuaril Journal, 0(0), 1-15.

Cai, Y., Hames, D. (2010). Minimum sample size determination for generalized extreme value distribution. Journal of Communication in Statistics-Simulation and Computation, 40(1), 87-98. Retrieved from : https//hal-archives-ouvertes.fr/hal-00651154.

Cherubini, U., Luciano, E.. (2004). Copula methods in finance. Wiley Finance Series. UK: John Wiley & Sons, Chichester.

Han, C., Liu, S., Guo, Y., Lin, H., Liang, Y., Zhang, H. (2018). Copula-based analysis of flood peak level and duration: Two case studies in Taihu Basin, China. Journal of Hydrologic Engineering, 23(6), 1–11.

Hogg, R. V., Craig, A. T., McKean, J. W. (2014). Introduction to Mathematical Statistics. New Jersey: Prentice Hall.

Hosking, J. R. M., Wallis, J. R., Wood, E. F. (1985). Estimation of the Generalized Extreme Value distribution by the method of probability-weighted moments. Technometrics, 27(3), 251-261.

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. Journal of Royal Meteorological Society, 87, 158-171.

Klugman, S. A., Panjer, H. H., Willmot, G. E. (2012). Loss Models from Data to Decisions. 4th edition. New Jersey (US): John Wiley & Sons, Inc.

Lyon, A. (2014). Why are Normal Distributions Normal? Br J Philos Sci. 65(3), 621– 649. doi:10.1093/bjps/axs046.

McKay, C. (2019). Probability and statistics. Waltham Abbey: ED-Tech Press.

Muna, S. U. N. (2017). Penentuan besaran premi produk asuransi pertanian berdasarkan pertimbangan curah hujan (Unpublished undergraduate thesis). Institut Pertanian Bogor, Bogor, Indonesia.

Muna, S. U. N. (2019a). Premium rate determination of crop insurance product based on rainfall Index consideration. IOP Conf. Series: Earth and Environmental Science. DOI:10.1088/1755-1315/299/1/012047.https://iopscience.iop.org/article/10.1088/1755-1315/299/1/012047/meta.

Muna, S. U. N. (2019b). Model asuransi pertanian berdasarkan indeks curah hujan (Studi kasus: komoditas padi di Dramaga Bogor) (Unpublished master thesis). Institut Pertanian Bogor, Bogor, Indonesia.

Munawir, A., June, T., Kusmana, C., & Setiawan, Y. (2022). SEBAL Model to Estimate Biophysics and Energy Flux Variable : Availability of Evapotranspiration Distribution Using Remote Sensing in Lore Lindu National Park. IOP Conf. Ser.: Earth Environ. Sci. 950 012022. doi:10.1088/1755-1315/950/1/012022.

Munawir, A. 2017. Kajian Dampak Lingkungan Kegiatan PenambanganTanah Timbun di Kota Kendari. Hasanuddin Student Journal. Vol. 1 No. (2): 109-119, Desember 2017P-ISSN: 2579-7859, E-ISSN: 2579-7867. Universitas Hasanuddin.

Nelsen, R. B. (1999). An Introduction to Copulas. 1st edition. New York, NY: Springer New York.

Schölzel, C., Friederichs, P. (2008). Multivariate non-normally distributed random variables in climate research-Introduction to the copula approach. Nonlinear Processes in Geophysics, 15(5), 761–772.

Sutikno, Kuswanto, H., Ratih, I. D. (2014). Gaussian Copula Marginal Regression For Modeling Extreme Data With Application. Mathematics and Statistics, 10(2), 192–200.

Yanti, R. W. (2020). Analisis Spasial Return Period Berbasis Kopula Untuk Data Curah Hujan Ekstrem di Sulawesi Selatan (Unpublished master thesis). Institut Pertanian Bogor, Bogor, Indonesia.

Zhang, L., Singh, V. P., Asce, F. (2006). Bivariate Flood Frequency Analysis Using the Copula Method. Journal Of Hydrologic Engineering, 150–164.

Zhang, Q., Singh, V. P., Li, J., Jiang, F., Bai, Y. (2012). Spatio-temporal variations of precipitation extremes in Xinjiang, China. Journal of Hydrology, 7–18.

Zscheischler, J., Orth, R., Seneviratne, S. I. (2017). Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields. Biogeosciences, 14, 3309–3320.

Published

2023-05-09

How to Cite

Muna, S. U. N. (2023). Crop Insurance Model Based on Maximum Daily Rainfall and Maximum Daily Temperature Index. ASTONJADRO, 12(2), 599–612. https://doi.org/10.32832/astonjadro.v12i2.13207

Issue

Section

Articles