Laboratory Tests of the Area of Head Joints and Bed Joints Increase the Diagonal Shear Stress of Brick Walls

Authors

  • Marwahyudi Marwahyudi INDONESIA
  • Muhammad Dian Rifai INDONESIA
  • Ahwan Ahwan INDONESIA

DOI:

https://doi.org/10.32832/astonjadro.v13i2.14938

Keywords:

head joint; bed joint; shear; diagonal stress.

Abstract

The strength of a brick wall is influenced by the failure of the mortar bond and the resistance of the bad joint and head joint when carrying the force. The wider the head joint and bad joint areas result in a wider bonded area which increases the diagonal shear strength of the wall. Residential walls that have increased ability to withstand diagonal shear forces will be more stable when subjected to earthquake lateral forces. This research formulates that the wider the connecting area of the body and head joint, the higher the diagonal shear strength. The test was carried out by making a square test object measuring 60 x 60 cm. then pressure is applied in the diagonal direction. At the time of setting up the test object is done carefully and thoroughly. The test object is positioned perpendicular to the diagonal direction. The test object is placed absolutely perpendicular and is given a load until it is completely damaged. Loading method by providing a force that increases regularly until the structure experiences a complete failure. The bonded area in each brick shape is measured and compared with the results of the diagonal shear strength. This value is analyzed to obtain the effect on the diagonal shear strength. The percentage effect of each brick shape is compared and the results are analyzed. The results of the analysis are to obtain justification whether the area of the bad joint and head joint affects the diagonal shear strength. The novelty of this research is to obtain several brick designs that increase the strength of the diagonal shear stress. Tests show that the greater the area of the head joint, the greater the value of the diagonal shear stress.

Author Biographies

Marwahyudi Marwahyudi, INDONESIA

University of Sahid Surakarta

Muhammad Dian Rifai, INDONESIA

University of Sahid Surakarta

Ahwan Ahwan, INDONESIA

University of Sahid Surakarta

References

A.W Hendry and FM Khalaf. (2001). Masonry wall construction.

Asteris, P. G., Repapis, C. C., Tsaris, A. K., Di Trapani, F., & Cavaleri, L. (2015). Parameters affecting the fundamental period of infilled RC frame structures. Earthquake and Structures, 9(5), 999–1028. https://doi.org/10.12989/eas.2015.9.5.999

ASTM E 519-02. (2002). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. American Society for Testing Materials, 5. https://doi.org/10.1520/E0519

Dautaj, A. D., Muriqi, A., Krasniqi, C., & Shatri, B. (2019). Shear resistance of masonry panel in infilled RC frames. International Journal of Advanced Structural Engineering, 11(2), 165–177. https://doi.org/10.1007/s40091-019-0223-7

Dawe and Seah; (1989). Out-of-plane resistance of concrete masonry infilled panels.

El-dakhakhni, W. (2017). Three-Strut Model for Concrete Masonry-Infilled Steel Frames. 9445(February 2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129

Farooquddin, S. (2000). LATERAL STIFFNESS OF INFILLED FRAME WITH DOOR & WINDOW OPENINGS FOR VARYING MODULUS OF. 7–9.

Francisco J. Crisafulli. (1997). thesis_fulltext_masonry.pdf. University of Canterbury.

Frapanti, S., & Tarigan, J. (2017). Analisa Portal Yang Memperhitungkan Kekakuan dinding Batu Bata dari Berbagai Negara.

Idoarjo, L. A. S. (2012). S TRENGTH A ND C HARACTERISTICS O F R ED B RICK M ADE O F W ASTE S IDOARJO L APINDO M UD. 12(2), 121–125.

Kałuża, M. (2020). Effectiveness of shear strengthening of walls made using aac blocks - laboratory test results. Archives of Civil Engineering, 66(2), 33–44. https://doi.org/10.24425/ace.2020.131794

Lee, S. J., Eom, T. S., & Yu, E. (2021). Investigation of Diagonal Strut Actions in Masonry-Infilled Reinforced Concrete Frames. International Journal of Concrete Structures and Materials, 15(1). https://doi.org/10.1186/s40069-020-00440-x

Leksono, R. S. (2012). Studi Pengaruh Kekuatan Dan Kekakuan Dinding Bata Pada Bangunan Bertingkat. Jurnal Teknik Sipil ITS, 1(1), 1–15.

Mahlil, Abdullah, M. A. (2014). Alternatif perkuatan dinding untuk mencegah kehancuran brittle. 3(4), 77–86.

Marwahyudi. (2013). Hasil buang pabrik gula dalam dunia rekayasa teknik sipil. Seminar Teknik Sipil UMS, 2006, 1–7.

Marwahyudi, M. (2020). Tegangan Geser Batu Bata Berkonstruksi Pada Dinding Rumah Rawan Gempa. Astonjadro, 8(2), 80. https://doi.org/10.32832/astonjadro.v8i2.2725

Romly, M. (2012). Uji Kuat Tekan dan Geser Dinding dengan Variasi Waktu Perendaman Bata Merah. Universitas Negeri Jember.

Tanganelli, M., Rotunno, T., & Viti, S. (2018). On the modelling of infilled RC frames through strut models. Cogent Engineering, 128(1), 1–19. https://doi.org/10.1080/23311916.2017.1371578

Tomaževič, M. (2009). Shear resistance of masonry walls and Eurocode 6: Shear versus tensile strength of masonry. Materials and Structures/Materiaux et Constructions, 42(7), 889–907. https://doi.org/10.1617/s11527-008-9430-6

Tsantilis, A. V., & Triantafillou, T. C. (2018). Innovative seismic isolation of masonry infills using cellular materials at the interface with the surrounding RC frames. Engineering Structures, 155(November 2017), 279–297. https://doi.org/10.1016/j.engstruct.2017.11.025

Uğurlu, M. A., Karaşin, A., Görgün, H., & Gunaslan, E. (2017). An analytic Study on a New Semi-Rigid Infilled Shear Wall. ASEM17, 9.

Ullah, S., Farooq, S. H., Usman, M., Ullah, B., Hussain, M., & Hanif, A. (2022). In-Plane Seismic Strengthening of Brick Masonry Using Steel and Plastic Meshes. Materials, 15(11). https://doi.org/10.3390/ma15114013

Zameeruddin, M., & Sangle, K. K. (2021). Performance-based Seismic Assessment of Reinforced Concrete Moment Resisting Frame. Journal of King Saud University - Engineering Sciences, 33(3), 153–165. https://doi.org/10.1016/j.jksues.2020.04.005

Artawan, I. P., Chaerul, M., & Gusty, S. (2023). Characterization of Oil and Diesel Waste Modifiers in Lasbutag Asphalt Cold Mix (Aggregated Buton Asphalt Layer). ASTONJADRO, 12(3), 823–829. https://doi.org/10.32832/astonjadro.v12i3.13868

Verdian, R., & Muin, R. B. (2023). The effect of variation in the length of water hyacinth fiber twisted on split tensile strength high performance fiber concrete. ASTONJADRO, 12(2), 546–557. httpBaggio, E. Y., Bagio, T. H., & Tistogondo, J. (2023). Mix design programming for normal concrete using cubic equation. ASTONJADRO, 12(1), 77–85. https://doi.org/10.32832/astonjadro.v12i1.7143s://doi.org/10.32832/astonjadro.v12i2.9346

Paikun, P., Amdani, S. A., Susanto, D. A., & Saepurrahman, D. (2023). Analysis of the compressive strength of concrete from brick wall waste as a concrete mixture. ASTONJADRO, 12(1), 150–162. https://doi.org/10.32832/astonjadro.v12i1.8145

Sitompul, S. T., & Pariatmono, P. (2022). Reliability of simple space truss structure. ASTONJADRO, 11(3), 600–607. https://doi.org/10.32832/astonjadro.v11i3.7399

Romadhon, E. S., Antonius, A., & Sumirin, S. (2022). Design of Low Alkali activator Geopolymer Concrete Mixtures. ASTONJADRO, 11(3), 627–638. https://doi.org/10.32832/astonjadro.v11i3.7484

Widodo, S., Safarizki, H. A., & Marwahyudi, M. (2022). Durability of concrete based on the remaining life of the building Case study: reinforced concrete in klaten district. ASTONJADRO, 11(3), 713–720. https://doi.org/10.32832/astonjadro.v11i3.7848

Astariani, N. K., Eka Partama, I. G. N., & Dwi, I. G. A. R. C. S. (2023). Influence Substitution of Tabas Stone Waste which Coated Polyester Resin to Concrete Compressive Strength. ASTONJADRO, 12(3), 738–745. https://doi.org/10.32832/astonjadro.v12i3.9065

Argoanto, Y., Bagio, T. H., & Kusumastuti, D. (2023). Dissipating the earthquake lateral base force of structure using sliding plate and link beam base isolation. ASTONJADRO, 12(1), 42–54. https://doi.org/10.32832/astonjadro.v12i1.5289

Baggio, E. Y., Bagio, T. H., & Tistogondo, J. (2023). Mix design programming for normal concrete using cubic equation. ASTONJADRO, 12(1), 77–85. https://doi.org/10.32832/astonjadro.v12i1.7143

Bachtiar, E., Setiawan, A., & Musahir, F. (2022). HIGH STRENGTH CONCRETE USING FLY ASH A CEMENT AND FINE AGGREGATE. ASTONJADRO, 11(2), 448–457. https://doi.org/10.32832/astonjadro.v11i2.6725

Priastiwi, Y. A., Hidayat, A., Tamrin, R., & Sendrika, D. B. (2021). RESISTANCE OF MORTAR WITH PPC CEMENT AND GEOPOLYMER MORTAR WITH WHITE SOIL SUBSTITUTION IN H2SO4 IMMERSION. ASTONJADRO, 10(2), 213–224. https://doi.org/10.32832/astonjadro.v10i2.4579

Bagio, T. H., Baggio, E. Y., Mudjanarko, S. W., & Naibaho, P. R. T. (2021). REINFORCED CONCRETE BEAM AND COLUMN PROGRAMMING BASED ON SNI:2847-2019 ON SMARTPHONE USING TEXAS INSTRUMENTS. ASTONJADRO, 10(2), 287–300. https://doi.org/10.32832/astonjadro.v10i2.5101

Gumilang, P. D., Safarisky, H. A., & Marwahyudi, M. (2021). PRESS STRONG CONCRETE ADDED SHELL OF KEONG SAWAH. ASTONJADRO, 10(1), 81–85. https://doi.org/10.32832/astonjadro.v10i1.3986

Sutarno, S., Rahmawati, D., & Masvika, H. (2021). EFFECT OF CHICKEN FEATHER WASTE ON CONCRETE MIXING ON COMPRESSIVE STRENGTH AND FLEXURAL STRENGTH. ASTONJADRO, 10(1), 162–172. https://doi.org/10.32832/astonjadro.v10i1.4330

Mubarak, M., Rulhendri, R., & Syaiful, S. (2020). PERENCANAAN PENINGKATAN PERKERASAN JALAN BETON PADA RUAS JALAN BABAKAN TENGAH KABUPATEN BOGOR. ASTONJADRO, 9(1), 1–13. https://doi.org/10.32832/astonjadro.v9i1.2694

Marwahyudi, M. (2020). STIFFNESS DINDING BATU BATA MENINGKATKAN KEKUATAN STRUKTUR. ASTONJADRO, 9(1), 30–37. https://doi.org/10.32832/astonjadro.v9i1.2840

Published

2024-05-20

How to Cite

Marwahyudi, M., Rifai, M. D., & Ahwan, A. (2024). Laboratory Tests of the Area of Head Joints and Bed Joints Increase the Diagonal Shear Stress of Brick Walls. ASTONJADRO, 13(2), 414–424. https://doi.org/10.32832/astonjadro.v13i2.14938

Issue

Section

Articles