Long Short-Term Memory Optimization Using Hybrid Sparrow Search Algorithm and Particle Swarm Optimization in Prediction of Water Level at Sluice Gates

Authors

  • Imam Farisi INDONESIA
  • Mardi Hardjianto INDONESIA

DOI:

https://doi.org/10.32832/astonjadro.v13i2.16251

Keywords:

water levels; hyperparameter; long short-term memory; particle swarm optimization; sparrow search algorithm; RMSE.

Abstract

During the period from 2014 to 2020, approximately 24 out of 44 districts in Jakarta experienced flooding disasters. Notably, at the beginning of January 2020, the Manggarai floodgate recorded a water height of 962 cm, categorized under Alert Level 1, indicating a critical and hazardous situation that required the evacuation of residents to safe places. This circumstance prompted the local government to enhance the monitoring and prediction system for water levels across all floodgates in the DKI Jakarta region. By utilizing improved water height predictions, the government can prepare more effective mitigation measures, such as reinforcing embankments, improving water channels, and implementing preventive actions prior to the occurrence of flooding disasters. The forecasting technique employing Long Short-Term Memory (LSTM) has been widely employed in previous research to predict water heights. Unfortunately, the accuracy of LSTM heavily depends on the manual selection of hyperparameters. The optimization of hyperparameters in LSTM is essential to find the optimal combination of values that influence the performance of the LSTM network. The objective is to maximize the model's performance, such as accuracy or lower error rates on previously unseen data. This optimization process plays a crucial role in achieving good results from the LSTM model, as the right choice of hyperparameters can yield a model that better understands complex patterns in the data. This research aims to determine the optimal hyperparameters using a hybrid optimization method. The hyperparameter optimization involves a combined approach of Sparrow Search Algorithm (SSA) and Particle Swarm Optimization (PSO) known as Hybrid SSA-PSO. This hybrid method is employed to reduce the error rate in predictions. The research outcomes, utilizing the Hybrid SSA-PSO optimization, revealed the smallest Root Mean Square Error (RMSE) evaluation at the Pulo Gadung water gate, measuring 9,553.

Author Biographies

Imam Farisi, INDONESIA

Faculty of Information Technology, Universitas Budi Luhur Jakarta

Mardi Hardjianto, INDONESIA

Faculty of Information Technology, Universitas Budi Luhur Jakarta

References

Akbar, F., & Pratiwi, V. (2020). Evaluasi Kapasitas Waduk Setiabudi Barat Dalam Penanggulangan Banjir Jakarta Selatan Dengan Pemodelan HEC-RAS 4.1. 0. CRANE: Civil Engineering Research Journal, 1(2).

Akbar, R., Santoso, R., & Warsito, B. (2023). Prediksi Tingkat Temperatur Kota Semarang Menggunakan Metode Long Short-Term Memory (LSTM). Jurnal Gaussian, 11(4), 572-579.

Alhussan, A. A., M El-Kenawy, E. S., Abdelhamid, A. A., Ibrahim, A., Eid, M. M., & Khafaga, D. S. (2023). Wind speed forecasting using optimized bidirectional LSTM based on dipper throated and genetic optimization algorithms. Frontiers in Energy Research, 11, 1172176.

Baek, S. S., Pyo, J., & Chun, J. A. (2020). Prediction of water level and water quality using a CNN-LSTM combined deep learning approach. Water, 12(12), 3399.

Chen, X., & Long, Z. (2023). E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model. Sustainability, 15(7), 5882.

Dai, H., Huang, G., Zeng, H., & Yang, F. (2021). PM2. 5 Concentration prediction based on spatiotemporal feature selection using XGBoost-MSCNN-GA-LSTM. Sustainability, 13(21), 12071.

Dong, S., Zhang, Y., & Zhou, X. (2023). Intelligent Hybrid Modeling of Complex Leaching System Based on LSTM Neural Network. Systems, 11(2), 78.

Gao, Y., Xia, X., & Guo, Y. (2023). A Modeling Method for Thermal Error Prediction of CNC Machine Equipment Based on Sparrow Search Algorithm and Long Short-Term Memory Neural Network. Sensors, 23(7), 3600.

Geng, X., Li, Y., & Sun, Q. (2023). A Novel Short-Term Ship Motion Prediction Algorithm Based on EMD and Adaptive PSO–LSTM with the Sliding Window Approach. Journal of Marine Science and Engineering, 11(3), 466.

Jayathilake, T., Sarukkalige, R., Hoshino, Y., & Rathnayake, U. (2022). Wetland Water Level Prediction Using Artificial Neural Networks—A Case Study in the Colombo Flood Detention Area, Sri Lanka. Climate, 11(1), 1.

Jia, W., Zhang, Y., Wei, Z., Zheng, Z., & Xie, P. (2023). Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model. Plos one, 18(4), e0281478.

Jumingan. (2006). Analisis Laporan Keuanagn. Jakarta: Bumi Aksara.

Kardhana, H., Valerian, J. R., Rohmat, F. I. W., & Kusuma, M. S. B. (2022). Improving Jakarta’s Katulampa Barrage Extreme Water Level Prediction Using Satellite-Based Long Short-Term Memory (LSTM) Neural Networks. Water, 14(9), 1469.

Kartini, D., Abadi, F., & Saragih, T. H. (2021). Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 39-44.

Kim, D. G., & Choi, J. Y. (2021). Optimization of design parameters in LSTM model for predictive maintenance. Applied Sciences, 11(14), 6450.

Kumar Pandey, R. et al. (2023) ‘Supervised deep learning-based paradigm to screen the enhanced oil recovery scenarios’, Scientific Reports, 13(1), pp. 1–8.

Kusudo, T., Yamamoto, A., Kimura, M., & Matsuno, Y. (2021). Development and assessment of water-level prediction models for small reservoirs using a deep learning algorithm. Water, 14(1), 55.

Liu, L., Chen, P., Wang, Y., & Han, L. (2023, June). A Short-term Power Load Forecasting Method Based on An Improved VMD-LSTM Algorithm. In Journal of Physics: Conference Series (Vol. 2532, No. 1, p. 012004). IOP Publishing.

Liu, X., Ha, M., Lei, X., & Zhang, Z. (2022). A Novel GRA-NARX Model for Water Level Prediction of Pumping Stations. Water, 14(19), 2954.

Liu, Y., & Liu, L. (2021). Wind power prediction based on LSTM-CNN optimization. Scientific Journal of Intelligent Systems Research Volume, 3(4).

Madiniyeti, J., Chao, Y., Li, T., Qi, H., & Wang, F. (2023). Concrete Dam Deformation Prediction Model Research Based on SSA–LSTM. Applied Sciences, 13(13), 7375.

Mohammed, S. J., Zubaidi, S. L., Al-Ansari, N., Ridha, H. M., & Al-Bdairi, N. S. S. (2022). Hybrid technique to improve the river water level forecasting using artificial neural network-based marine predators algorithm. Advances in Civil Engineering, 2022.

Noor, F., Haq, S., Rakib, M., Ahmed, T., Jamal, Z., Siam, Z. S., ... & Rahman, R. M. (2022). Water level forecasting using spatiotemporal attention-based long short-term memory network. Water, 14(4), 612.

PengJun, D., & GuiLin, L. (2023). Water quality prediction research based on SSA-LSTM model. In E3S Web of Conferences (Vol. 393, p. 02025). EDP Sciences.

Tang, G., Sheng, J., Wang, D., & Men, S. (2020). Continuous estimation of human upper limb joint angles by using PSO-LSTM model. IEEE Access, 9, 17986-17997.

Taryana, A., El Mahmudi, M. R., & Bekti, H. (2022). Analisis Kesiapsiagaan Bencana Banjir Di Jakarta. JANE-Jurnal Administrasi Negara, 13(2), 302-311.

Teng, Z. C., Teng, Y. C., Liu, J. L., Zhou, Y. D., Liu, X. Y., Li, Z. W., & Tao, C. Y. (2023). Study on triaxial test and constitutive prediction model of frozen silty clay. Frontiers in Earth Science, 10, 1069182.

Wang, W., Tong, M., & Yu, M. (2020). Blood glucose prediction with VMD and LSTM optimized by improved particle swarm optimization. IEEE Access, 8, 217908-217916.

Xu, J., Fan, H., Luo, M., Li, P., Jeong, T., & Xu, L. (2023). Transformer Based Water Level Prediction in Poyang Lake, China. Water, 15(3), 576.

Yang, Q. (2023). Research on e-commerce customer satisfaction evaluation method based on pso-lstm and text mining. 3c Empresa: investigación y pensamiento crítico, 12(1), 51-66.

Zhang, W., Liu, X., Zhang, L., & Wang, Y. (2023). Intelligent real-time prediction of multi-region thrust of EPB shield machine based on SSA-LSTM. Engineering Research Express, 5(3), 035013.

Zheng, C., & Li, H. (2023). The prediction of collective Economic development based on the PSO-LSTM model in smart agriculture. PeerJ Computer Science, 9, e1304.

Satriadi, I. (2021). ANALISIS HIDROGRAF BANJIR SALURAN IRIGASI CIBALOK BOGOR. ASTONJADRO, 6(1), 49–59. https://doi.org/10.32832/astonjadro.v6i1.2261

Ginanjar, B., & Hariati, F. (2015). ANALISIS KOEFISIEN DEBIT MODEL ALAT UKUR CELAH SEGIEMPAT DI LABORATORIUM HIDROLIKA TEKNIK SIPIL UNIVERSITAS IBN KHALDUN BOGOR. ASTONJADRO, 4(2), 18–24. https://doi.org/10.32832/astonjadro.v4i2.824

Hasibuan, A. F., & Hariati, F. (2020). PERENCANAAN SISTEM PERPIPAAN AIR BERSIH KELURAHAN ABADI JAYA KECAMATAN SUKMAJAYA KOTA DEPOK. ASTONJADRO, 6(2), 69–78. https://doi.org/10.32832/astonjadro.v6i2.2263

Alam, M. P., & Lutfi, M. (2016). ANALISIS TREND HIDROGRAF TERHADAP SIMULATOR HUJAN SATU MODEL DAS DENGAN METODE HSS GAMA I. ASTONJADRO, 5(2), 58–66. https://doi.org/10.32832/astonjadro.v5i2.840

Barid, B., & Afanda, B. O. (2022). Increasing Peak Flow of Snyder Synthetic Hydrograph Units in the Serenan Sub-Watershed of Bengawan Solo Watershed. ASTONJADRO, 11(3), 616–626. https://doi.org/10.32832/astonjadro.v11i3.7456

Imamuddin, M., & Cahyanto, D. (2020). ANALYSIS OF DRAINAGE CHANNEL CAPACITY AT SINDANG STREET IN SINDANG HOUSE PUMP AREA. ASTONJADRO, 9(2), 132–144. https://doi.org/10.32832/astonjadro.v9i2.3387

Imamuddin, M. I., & Laraswati, L. (2021). ANALYSIS CAPACITY OF WATERWAY IN ANEKA ELOK EAST JAKARTA. ASTONJADRO, 10(2), 322–332. https://doi.org/10.32832/astonjadro.v10i2.5303

Jatmika, B., Paikun, P., & Resdiawan, W. (2023). Management of Artesian Wells at Bumi Purnawira Housing Sukabumi City with Water Distribution Application. ASTONJADRO, 12(1), 163–175. https://doi.org/10.32832/astonjadro.v12i1.8187

Pradnyani, I. A. E., Sueca, N. P., & Prajnawrdhi, T. A. (2024). The Role of Local Communities in Overcoming River Pollution in Peliatan Village. ASTONJADRO, 13(1), 259–270. https://doi.org/10.32832/astonjadro.v13i1.14765

Aminda, R. S. (2024). Analysis of the Availability and Sustainable Management of Clean Water and Sanitation in Bogor Regency. ASTONJADRO, 13(1), 304–314. https://doi.org/10.32832/astonjadro.v13i1.15285

Arsana, I. G. N. K., & Astiti, S. P. C. (2023). Handling and Control of Floods in the Pulukan River/Tukad Macro Drainage System in Jembrana Regency. ASTONJADRO, 12(3), 845–858. https://doi.org/10.32832/astonjadro.v12i3.14115

Fathar, I. R., Riani, E., Nurhasanah, N., & Munawir, A. (2023). Utilization of Ozone and Kefir Whey Probiotics as a Green Technology in Coliform Removal in Health Care Facilities Wastewater. ASTONJADRO, 12(3), 799–813. https://doi.org/10.32832/astonjadro.v12i3.13786

Rabbani, M. G., & Marsoyo, A. (2023). Comparison of Community Responses to Clean Water Facilities The KOTAKU Program in Bekasi Regency. ASTONJADRO, 12(2), 395–410. https://doi.org/10.32832/astonjadro.v12i2.8790

Nurul Hijah, S., & Kendimansyah, M. (2023). Analysis of Babi Reservoir Water Management for Irigation and Raw Water in Puyung Village Jonggat District Central Lombok Regency. ASTONJADRO, 12(1), 293–303. https://doi.org/10.32832/astonjadro.v12i1.8767

Published

2024-05-22

How to Cite

Farisi, I., & Hardjianto, M. (2024). Long Short-Term Memory Optimization Using Hybrid Sparrow Search Algorithm and Particle Swarm Optimization in Prediction of Water Level at Sluice Gates. ASTONJADRO, 13(2), 614–626. https://doi.org/10.32832/astonjadro.v13i2.16251

Issue

Section

Articles