Comparison of Design and Cost of Reinforced Concrete Structures in Buildings with Brick, Brick and Light Brick Walls in front of SD No. 9 Benoa

Authors

  • Ni Kadek Astariani INDONESIA
  • I Gusti Made Sudika INDONESIA
  • Putu Arif Prabawa Triatmaja INDONESIA

DOI:

https://doi.org/10.32832/astonjadro.v14i2.17207

Keywords:

reinforced concrete; brick; Concrete brick; light brick; SAP2000; cost structure.

Abstract

In building structures, the accepted dead load is the load of the elements in the building, including reinforced concrete, rebated concrete, specs, ceramics, tiles, ceilings, MEP, walls and others. The wall load depends on what material is used on the wall. Bricks with half masonry provide a load of 250 kg/m2 (PPIUG, 1983). A pair of hollow brick walls weighs 120 kg/m2 (PPIUG, 1983) for HB 10. Light brick is concrete where air bubbles are caused by chemical reactions, AAC (Autoclaved Aerated Concrete) mixture generally consists of quartz sand, cement, lime, a little gypsum, water, and aluminum paste as a developer. Has a weight of 60 kg/m2 for the type with a thickness of 10 cm. Research is needed to compare the calculation results and structural costs of sloofs, beams, columns, ring beams and foundations in structures that use brick walls, concrete blocks and lightweight bricks. In this research, three structural models were created, namely those using brick walls, concrete blocks and lightweight bricks. Analysis was assisted using the SAP2000 Version 14.2.2 computer program. which refers to SNI-1726-2012 and SNI-2847-2013. In this research, a three-story school building located in Benoa, South Kuta Badung was studied. The results of the analysis resulted in a comparison of material requirements for the structural model with brick walls: In the overall structure, it was found that the concrete requirement in the model with brick walls was 15.71% smaller, while in the model with lightweight bricks it was 16.50% smaller. And the iron requirement for the model with bricks is 5.85% smaller, while for the model with lightweight bricks it is 6.69% smaller. The comparison of structural costs to the structural model with brick walls was found to be 8.67% smaller for the model with brick walls, and 9.26% smaller for the model with lightweight brick walls.

Author Biographies

Ni Kadek Astariani, INDONESIA

Program Studi Teknik Sipil Fakultas Sains dan Teknologi Universitas Ngurah Rai Bali

I Gusti Made Sudika, INDONESIA

Program Studi Teknik Sipil Fakultas Sains dan Teknologi Universitas Ngurah Rai Bali

Putu Arif Prabawa Triatmaja, INDONESIA

Program Studi Teknik Sipil Fakultas Sains dan Teknologi Universitas Ngurah Rai Bali

References

Dewobroto, Wiryanto. (2004). Aplikasi Rekayasa Konstruksi dengan SAP2000. Alex Media Komputindo. Jakarta

Dipohusodo, Istimawan. (1993). Struktur Beton Bertulang. Berdasarkan SK. Sni T- 15-1991-03. Jakarta

Indarto, Himawan. (2013). Aplikasi SNI Gempa 1726:2012 for Dummies. BDF. Semarang.Republik Indonesia. 2013. SNI 2847-2013 Persyaratan Beton Struktural Untuk Bangunan Gedung. Badan Standarisasi Nasional. Jakarta.

Pramono, Handi. (2004). Struktur 2D & 3D dengan SAP2000. Maxicom. Solo. Republik Indonesia. 1983. Peraturan Pembebanan Indonesia Untuk Gedung 1983. Yayasan Lembaga Penyelidikan Masalah Bangunan. Bandung.

Direktorat Penyelidikan Masalah Bangunan Republik Indonesia. (2012). SNI 1726-2012 Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Gedung dan Non Gedung. Badan Standarisasi Nasional. Jakarta.

Republik Indonesia. (2013). SNI 2847-2013 Persyaratan Beton Struktural Untuk Bangunan Gedung. Badan Standarisasi Nasional. Jakarta.

Setiawan, Agus. (2016). Perancangan Struktur Beton Bertulang Berdasarkan SNI- 2847-2013. Erlangga. Jakarta

Wibowo, Amdhani Prihatmoko. (2012). Perencanaan Struktur Gedung Beton Bertulang Dengan Sistem Rangka Pemikul Momen Khusus (SRPMK)dan Sistem Rangka Pemikul Momen (SRPMM). Yogyakarta.

Octaviani, R., Bestari, R., & Sukamdo, P. (2024). Real Response Modification Value of Reinforced Concrete Structures Using the Pushover Method in Horizontal Irranged Buildings. ASTONJADRO, 14(1), 60–84. https://doi.org/10.32832/astonjadro.v14i1.16264

Listiana, I. D. T., Safarizki, H. A., & Marwahyudi, M. (2024). Structural Performance Towards Dynamic Earthquake Spectrum Response According to SNI 1726-2012 and SNI 03-1726-2019 (Study Case Hospital Building ini Solo). ASTONJADRO, 13(2), 337–347. https://doi.org/10.32832/astonjadro.v13i2.12770

Astariani, N. K., Eka Partama, I. G. N., & Dwi, I. G. A. R. C. S. (2023). Influence Substitution of Tabas Stone Waste which Coated Polyester Resin to Concrete Compressive Strength. ASTONJADRO, 12(3), 738–745. https://doi.org/10.32832/astonjadro.v12i3.9065

Argoanto, Y., Hartono Bagio, T., & Kusumastuti, D. (2023). Dissipating the Earthquake Lateral Base Force of Structure Using Sliding Plate and Link Beam Base Isolation. ASTONJADRO, 12(1), 42–54. https://doi.org/10.32832/astonjadro.v12i1.5289

Yudhistira Baggio, E., Hartono Bagio, T., & Tistogondo, J. (2023). Mix Design Programming for Normal Concrete using Cubic Equation. ASTONJADRO, 12(1), 77–85. https://doi.org/10.32832/astonjadro.v12i1.7143

Bagio, T. H., Baggio, E. Y., Mudjanarko, S. W., & Naibaho, P. R. T. (2021). REINFORCED CONCRETE BEAM AND COLUMN PROGRAMMING BASED ON SNI:2847-2019 ON SMARTPHONE USING TEXAS INSTRUMENTS. ASTONJADRO, 10(2), 287–300. https://doi.org/10.32832/astonjadro.v10i2.5101

Gumilang, P. D., Safarisky, H. A., & Marwahyudi, M. (2021). PRESS STRONG CONCRETE ADDED SHELL OF KEONG SAWAH. ASTONJADRO, 10(1), 81–85. https://doi.org/10.32832/astonjadro.v10i1.3986

Published

2025-05-12

How to Cite

Astariani, N. K., Sudika, I. G. M., & Triatmaja, P. A. P. (2025). Comparison of Design and Cost of Reinforced Concrete Structures in Buildings with Brick, Brick and Light Brick Walls in front of SD No. 9 Benoa. ASTONJADRO, 14(2), 393–407. https://doi.org/10.32832/astonjadro.v14i2.17207

Issue

Section

Articles