Implementasi Penggabungan Prewitt dan Canny Edge Detection untuk Identifikasi Ikan Air Tawar
DOI:
https://doi.org/10.32832/kreatif.v6i2.2185Kata Kunci:
prewitt, canny, edge detection, ektrasi fitur, ikan air tawarAbstrak
Abstrak
Indonesia merupakan negara yang memiliki keanekaragaman hayati yang besar, salah satunya jenisnya ialah keanekaragaman ikan air tawar. Ikan air tawar yang layak konsumsi saat ini pun banyak jenisnya, sehingga bagi masyarakat yang kurang pengetahuan untuk mengenali jenis ikan sangatlah sulit. Teknologi identifikasi pengenalan citra dengan berbasis konten citra (Content Based Image Retrieval) dengan fitur bentuk berdasarkan titik tepi yang dihasilkan dapat membantu mengenali jenis ikan yang ada. Citra ikan yang digunakan diubah dari RGB menjadi grayscale yang diproses dengan metode deteksi tepi menjadi matriks nilai biner sehingga membentuk titik tepi dari ikan. Data citra ikan air tawar dalam penelitian berjumlah sepuluh jenis ikan, yang akan diproses untuk mendapatkan ekstraksi fitur deteksi tepinya. Deteksi tepi yang digunakan ialah penggabungan metode prewitt dan canny. Penelitian ini tidak memiliki hasil yang akurat dengan nilai 25%. Dimana penggabungan fitur lain akan sangat membantu dalam identifikasi.
Abstract
Indonesia is a country that has a great biodiversity, one of which is the diversity of freshwater fish. Freshwater fish that are suitable for consumption today are of many kinds, so that people who lack knowledge to recognize fish species are very difficult. Image recognition identification technology with Content Based Image Retrieval with shape features based on the resulting edge points can help identify the types of fish that exist. The fish image used is converted from RGB to grayscale which is processed by edge detection method into a binary value matrix so that it forms the edge points of the fish. Image data of freshwater fish in the study amounted to ten types of fish, which will be processed to obtain extraction of the edge detection features. The edge detection used is the merging of the prewitt and canny methods. This study did not have accurate results with a value of 25%. Where combining other features will be very helpful in identification.
Referensi
Santoso L. “Biologi reproduksi ikan belida (chitala lopis) di sungai tulang bawang, lampung”, Berkala Perikanan Terubuk, Vol. 37. No.1. 2009
Eosina P, Laxmi GF, Fatimah F. The Sobel Edge Detection Techniques for Freshwater Fish Image Analysis. The 4th International Seminar on Sciences. Bogor. 2017.
Fatimah F. Laxmi GF. Eosina P. Pengubahan Data Image Ikan Air Tawar ke Data Vektor menggunakan Edge Detection Metode Canny. Seminar Matematika dan Pendidikan Matematika UNY. Yogyakarta. 2017; Vol 1 : 55-60.
Laxmi GF. Eosina P. Fatimah F. Analisis Perbandingan Metode Prewitt dan Canny Untuk Identifikasi Ikan Air Tawar. SINTAK. Semarang. 2017; Vol 1 :
Yunus M. “Perbandingan metode-metode edge detection untuk proses segmentasi citra digital”, Program Studi Teknik Informatika, STMIK PPKIA Pradnya Paramita Malang, Jurnal Teknologi Informasi Vol. 3 No. 2. 2008.
Zevi A. Identifikasi Ikan Air Tawar Menggunakan Metode PrewittEdge Detection. Skripsi. Universitas Ibn Khaldun. Bogor. 2014
Muhammad Nurullah. Studi Pembanding Deteksi Tepi (Edge Detection) Citra JPEG Dengan Operator Sobel dan Operator Canny Menggunakan Software MATLAB. Skripsi. Universitas Islam Negeri Hidayatullah
Raman Maini, Himanshu Anggarwai. Study and Comparison of Various Image Edge Detection Techniques. International Journal of Image Processing (IJIP) Vol 3Issue 1. 2014
Apriyana et.al. 2013. “Perbandingan Metode Sobel, Metode Prewitt dan Metode Robert Untuk Deteksi Tepi Objek Pada Aplikasi Pengenalan Bentuk Berbasis Citra Digital”, Program Studi Teknik Informatika, STMIK GI MDP.
Deepika A, Devender A, Rohit T. Analytical Comparison between Sobel and Prewitt Edge Detection Techniques. International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016. ISSN 2229-5518
Elias Dianta G. Deteksi Tepi Menggunakan Metode Canny Dengan Matlab Untuk Membedakan Uang Asli Dan Uang Palsu. Jurnal Universitas Gunadarma. 2012
Wu, et. al. A Leaf Recoginition Algorithm for Plant Classification Using Probabilistic Neural Network. E-Print archive Cornell University Library. arXiv: 0707.4289v1. 2007.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Penulis yang menerbitkan jurnal ini menyetujui persyaratan berikut:
- Penulis memiliki hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang secara simultan dilisensikan yang memungkinkan orang lain untuk berbagi karya dengan pengakuan kepengarangan karya dan publikasi awal dalam jurnal ini.
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk memposting pekerjaan mereka secara online (misalnya, dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan.
Biaya Publikasi
Jurnal Krea-TIF memiliki biaya publikasi Artikel, dengan
Biaya per Artikel : Rp 350.000
Bank Transfer : CIMB Niaga Syariah 761998938200 an GIBTHA FITRI LAXMI
Penulis diharuskan membayar biaya publikasi sebagai biaya pengajuan untuk berkontribusi dalam pembiayaan proses review dan editing.
*Jika Anda tidak memiliki dana untuk membayar biaya tersebut, Anda akan memiliki kesempatan untuk membebaskan setiap biaya. Kami tidak ingin ada biaya untuk mencegah publikasi karya yang layak. Melalui proses seleksi kelayakan tentunya.